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1 Introduction
This report will outline how a maximum likelihood fitting can be used to extract both decay
constants from an isotope of two decay components. It will also outline whether the method of
fitting is bias and whether is resembles a good representation of the experimental data.

2 Maximum Likelihood Fitting
The experimental data given contained a series of decay times for an isotope with two decay
components. The decay time for each component will be referred to as ta and tb consecutively and
the ratio of atoms that are of component a as f . To fit a model the method of maximum likelihood
fitting was used. For any data point with decay time t the probability of that value occurring is
p(t/ta, tb, f). For this isotope the probability is:

p(t/ta, tb, f) = f(1/ta)exp
−t/ta + (1− f)(1/tb)exp

−t/tb

Amodel can be fitted to the data by minimizing the value of LL. As every data point is independent
the probability for this experiment occurring is:

L =
∏
i

p(ti/ta, tb, f)

To maximize this value is the same as to maximize the log(L) and therefore the solution is the
most minimal value for the Negative Linear Likelihood which is:

LL = −
∑
i

log(p(ti/ta, tb, f))

The minimizing was done using the scipy.optimize function minimize with the Nelder-Mead
algorithm.

3 Parameter Estimation
As the likelihood is posed as a probability the resulting parameters will lie in a Normal distribution
given by the equation of a Gaussian:

p(xj) =
1√
2πσ2

j

exp
− 1

2σ2
j

(xj−x̂j)2

Using this probability distribution the value for the LL function is given by:

−LL =
∑
j

1

2
ln(2π) + ln(σi) +

1

2σ2
j

(xj − x̂j)
2

Assuming the measurement errors σj are constant the LL function differs only with the value of
χ =

∑
j

1
σ2
j
(xj − x̂j)

2 by 0.5 and therefore an increase in the LL function by 0.5 corresponds to an
increase in σ of the estimated parameter.
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By fitting the model to 10000 experimental measurements and analyzing the distribution of
possible parameter values to find the parameter value σ above and σ below, the following results
were attained:

Parameters Estimate +σ −σ Error
ta 0.19783951 0.195 0.201 0.003
tb 1.3072256 1.279 1.337 0.03
f 0.7484944 0.742 0.755 0.013

Below are the distribution of parameter values for ta, tb and f consecutively plotted in the
region −3σ to 3σ where the values for −σ and σ are marked:
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Figure 1: The value of ta at −σ is 0.195 and the value at +σ is 0.201
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Figure 2: The value of tb at −σ is 1.279 and the value at +σ is 1.337
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Figure 3: The value of f at −σ is 0.742 and the value at +σ is 0.755

4 Experimental Error
To test whether a parameter estimation method using log likelihood was a good representation of
the experiment the model was simulated using a Monte Carlo method. This was done by sampling
random decay time values in the range of 0 : 7 seconds and then either including that value in
the test set or excluding it depending on whether a generated random number is less than the
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evaluated probability for that decay time. As each independent atom in the simulation required a
probability in which it would decay or not given the model parameters. For this I normalized the
probability used in the previous section so that its integral over t resulted in zero. The probability
in which any atom would decay:

p(t/ta, tb, f) = A(f(1/ta)exp
−t/ta + (1− f)(1/tb)exp

−t/tb) A =
(tatb)

2

1 + f(t2b − t2a)

As the Monte Carlo simulation uses the generation of a random number with a uniform distri-
bution the fitted parameters will vary through a normal distribution. A normal distribution will
generate a value in the region of its mean with a standard deviation equal to 1 over the square root
of the size of the sample. The following results are obtained from 500 Monte Carlo runs each with
10000 data points therefore the result of the simulation will vary by 1√

500
percent of the estimated

value which is 0.045.

Parameter Mean Stdev Error as %
ta 0.195 0.013 0.067
tb 1.250 0.117 0.093
f 0.740 0.033 0.044

The estimated errors for the simulation for each parameter are 0.067, 0.093 and 0.044 respec-
tively and were calculated as the mean

standarddeviation across each of the 500 Monte Carlo experiments.
It appears the method is biased as both the error for ta and tb are above the estimate for the error
in a normal distribution of 500 predictions which is 0.045. A plot of the estimated parameters for
both decay times of each component is plotted bellow. It is clear the larger error is induced by the
method overestimating tb given ta is high and vice versa as there appears to be positive correlation
in the graph and not a true normal distribution.
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Furthermore the error estimated by varying the LL function in the fitting process in section
3 is a lot lower than the error calculated in the Monte Carlo simulations. This is most likely due
to the model not following the exact behavior of the isotopes. Also possibly the measurement
error σj is not constant and affected by the background radiation as the values fitting the original
experimental measurements estimate each parameter as a lot higher than the estimates from the
Monte Carlo simulations. Below is a graph of the frequency of each decay time for the experimental
measurements in blue and the Monte Carlo model in red. It is clear that the Monte Carlo model
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overestimates the error that occurs in an actual experiment as the randomness of it doesn’t seem
to match entirely. This is understandable as the assumption that every atom is independent used
in the derivation of the LL function is incorrect. Therefore a method without that assumption
might be required to estimate the parameters
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