
Video event detection for the physically impaired

Patrick Green

January 4, 2021

1 Introduction

We were assigned the task of detecting a person in a room given a set of consec-
utive frames, spaced at 1 second each with some frames missing, from a static
point of view in RGB color space. We used a subtraction of consecutive frames
followed by dilation and eroding to obtain a binary image. We then detected the
center of mass by first finding the center of mass of all the activity in the binary
image followed by successive center of mass calculations on smaller windows
reducing by 50 pixels, centered on the last calculated center of mass. We then
used activity in hard coded regions of the binary image to decipher whether the
agent was in or out the room. Lastly we smoothed the motion of the center of
mass using a Savagol filter.

2 Background

2.1 Static Background Subtraction

The first technique we attempted to use was that of background subtraction.
Some problems were identified in using this approach: There are objects which
change position in the duration of the video which means that subtracting a
static background from each frame gave us very noisy results. The lighting in
the room changes significantly throughout the day and poses a big problem for
this method.

2.2 Frame Differencing

The final approach we used was frame differencing. Computing the absolute
difference of consecutive frames yielded very good results right away, therefore
it was the technique we explored most for this assignment. 2 different approaches
were tested using frame differencing. In this technique we take: We attempted
to perform frame differencing on the normalized images. The normalization and
differencing was attempted both in RGB space and grayscale space, however the
resulting frame was still quite noisy.

r, g, b =
R

R + G + B
,

G

R + G + B
,

B

R + G + B

1

Differencing of consecutive frames in RGB space produced good results, with
very little post-processing and the moving parts of the person were clearly visible
with less noise than the other techniques we tried.

2.3 Mean Filter

Another technique that was considered was using adaptive background subtrac-
tion. In this approach, instead of using a static background that is subtracted
from each image, we compute a running average over some window of frames,
the size of which is a parameter to the approach. Given that the simple frame
differencing produced excellent results for this very limited task, we decided
not to implement this more computationally expensive and also parameterized
approach. Possible drawbacks in this approach include the fact that in many
frames there is very little movement and therefore averaging over the previous
frames would result in small movements being lost and also when the person is
moving for example from the door to cabinet, the whole image has changed over
the past few frames therefor detecting the center of the moving figure could be
more complicated than necessary.

2.4 Other Approaches

More complex approaches include Running Gaussian Average which character-
izes each pixel by a Gaussian Distribution and Mixture of Gaussians (Back-
ground mixture models) which aim to characterize pixels as a mixture of Gaus-
sians in order to classify the pixel as background or foreground were consid-
ered but were not implemented since the more computationally efficient method
worked with very high success rate.

2.5 Object detection

The final algorithm uses a simple frame-differencing technique. The activity in
the subtraction was converted to a binary image by including every pixel above
the value of 80. To detect the center of mass of the movements in the frames,
which is then used to recursively compute the average activity

1

Area(w[1], w[0])

w[1]∑
x,y=w[0]

img[x, y]

in the area where the center of mass was detected is successively smalled win-
dows. This area activity measures are used to activate the detector and aim to
replace contour detection and finding contour sizes in order to speed up com-
putation.

Find differences

Img_diff = compute_absolute_diff(im_{t-1}, im_{t})

Img_diff = convertToGrayscale(im_diff,0,255)

2

Im_thresh = BinaryThreshold(im_diff,80,255)

remove small noise

Im_thresh = Erode(Im_thresh, (1, 1), iterations=1)

connect nearby small components and remove small ones

Im_thresh = Dilate(Im_thresh, (1, 1), iterations=4)

Im_thresh = Erode(Im_thresh, (1, 1), iterations=3)

Im_thresh = Dilate(Im_thresh, (1, 1), iterations=4)

Total_activity = avg_act(im_thresh, all)

if total activity > 0.05:

CoM0 = compute_center_of_mass(im_thresh,all)

Avg_win_act0 = avg_act(im_thresh, (250px-wide window around CoM))

CoM1 = compute_center_of_mass(im_thresh,all)

Avg_win_act1 = avg_act(im_thresh, (150px-wide window around CoM1))

CoM2 = compute_center_of_mass(im_thresh,all)

Avg_win_act2 = avg_act(im_thresh, (50px-wide window around CoM2))

Check the ratio of activities to ensure that the activity is indeed

at the center of mass and is not the result of scattered activity

CoM = RatioCheck (Avg_win_act0, Avg_win_act1 , Avg_win_act2)

else:

CoM = None

Figure 1: Frame subtraction result

3 Modeling Behavior

3.1 State Machine

To handle the cases where the agent was not present we built a state machine
to remove implausible transitions, for example moving in and out of the room

3

without passing through the door. The state machine for this filtering of tran-
sitions is presented bellow.

at the doorstart

outside

at cabinetsat desk

door activity

cabinet activityoffice activity

no activity

no activity

door activity

door Activity

cabinet activity+no activity

office activity

door activity

cabinet activity

office activity+no activity

Edges with the largest activity are transversed every frame. The values of
office activity,cabinet activity and door activity are scaled dependent on the
activity in the corresponding bounding boxes. This is later normalized across
all the decisions that the current state can make. The boxes are marked on the
graphic bellow. The value of no activity is set to 1 when total activity is not 0
and handles cases where the frame subtraction reveals no difference and ensures
the leaving of the room or the continuation of the current state. This prevented
any miss detection of frames following frames with no motion and allows no
center of mass to be drawn when the agent is outside the room.

4

Figure 2: Bounding boxes marking zones to measure activity levels. Yellow
corresponds to the door activity, Blue to the office activity and Green to the
cabinet activity

3.2 Statistics

The statistics were obtained by calculating whether the center of mass lye with-
ing one of the 3 bounding boxes or not. The outside state was used to decipher
the frames where the agent was outside or inside the room and also allowed us
to obtain the time stamp the points for which he entered and exited.

if old_state == "outside" and state != "outside":

out_to_in += 1

if old_state != "outside" and state == "outside":

in_to_out += 1

if not center_of_mass:

out_c = out_c + 1

not_desk_c = not_desk_c+ 1

elif is_in(center_of_mass, room.office):

desk_c = desk_c+ 1

elif is_in(center_of_mass, room.cabinet):

cabinet_c +=1

not_desk_c +=1

else:

not_desk_c += 1

4 Smoothing

4.1 Savitzky Golay filter

A Savgol filter was chosen to smooth the data as it allowed for only movement
with along a polynomial of chosen degree. This filtered out all high frequency
cases when the center of mass changed position abruptly and its trajectory
could not be modeled by a smooth polynomial. We chose a value of 5 for
the order of the polynomial and a windows size of 27. As several of adjacent

5

frames had varying time intervals the window size was adapted to allow for large
movements in these specific periods. The approach smooths data similar to a
moving average. The new data value of Yj is derived using the formula bellow
where m is the window size.

Yj =

m−1
2∑

i=−m−1
2

Ciyj+i

The coefficients Ci are dependent on the order of the polynomial for example a
2nd order polynomial with 7 data points would have the following formula.

yt = (−2xt−3 + 3xt−2 + 6xt−1 + 7xt + 6xt+1 + 3xt+2 + 2xt+3)/21

Figure 3: Aid to explain Savgol filtering

As the Savgol filter is for use on a 1D array the filter it has been applied to
the x and y coordinates separately. This is a simplification which worked well
in our case as movement was generally limited to either raising from a chair and
moving right to left. However in the general the x and y coordinates are not
independent.

5 Results

The algorithms presented above have been tested against 105 labeled images.
The labeling was done by clicking on the image where we think the center of
mass would be. In the cases where the subject is occluded, the mass label was
placed considering the visible parts of the body.
The final result, as measured on a subset of 85 of 105 images that contained a
person, was a RMSE of 64.85 pixels without the Savitzky Golay filter and 80
with it. Out of the 20 labeled frames where nobody was in the room, there
were no occasions where a detection was reported. Detailed statistics are given
below.

6

Table 1: Counts from all frames
Activity Number of frames

Working at the desk 5324
No one in the office 1309
At the filing cabinet 36
Entered the office 2
Exiting the office 2
Total number of frames 6719

Table 2: Error between manual and automatic detection
Filtering RMSE (in pixels) Labeled images with presence Total labeled images

With SavGol 80.3169456884 85 105
W/o SavGol 64.8537743558 85 105

5.1 Strengths

The algorithms main strength were that we were able to reuse the last frames
center of mass when the state machine detected no change of state. This allowed
for us to label frames where frame subtraction did not yield any activity. The
continuation of a center of mass is presented in figure 4 with the pink circle
instead of the green. The first binary images shows a small amount of activity
and the second shows none. Both binary images are created using the difference
of the image to th left of it to it and the frame before that.

Figure 4: Detecting the center of mass correctly on two consecutive frames, one
with activity and the other with none

In additions we were able to prevent mis detections when the agent was
not present in the room using the current state to prevent the drawing of an
incorrect center of mass.

7

Another strong feature of this method is performance. All 6700 frames are
processed in under 5 minutes on a desktop-class machine when showing the
frames and in around 2 minutes when the activity is not shown in real-time and
drawing on frames is not performed.

5.2 Weaknesses

The algorithms main weakness are that the mass is computed from the absolute
difference and therefore when there is very large motion, the subject appears
twice in the difference frame which means that the center of mass appears to be
lagging behind its actual position in such cases. This effect might was enhanced
by a Savitzky Golay filter which pulled the center of mass a few pixels behind
however this gave a poorer RMSE as its influence on more quiet frames of very
limited movement and lots of small activities. Furthermore the filter was not
tuned to missing frames and therefore would smooth by the same degree for all
time transitions which also would account for at 16 pixel increase in the RMSE.

The sequence of images below outline the effect described above.

Figure 5: Incorrectly identifying the center of mass

6 Conclusion

In this report we have shown an algorithm to detect a person in a room from a
static camera. The algorithm combines simple image processing techniques (im-
ages subtraction, erosion and dilation,thresholding, finding the center of mass)
and application of Domain Specific Knowledge (dynamics of the room in the
form of a state machine). The result was a very robust detection algorithm
given the conditions which gave no mis detections and a low error for the center
of mass. From this task we have learned that by applying simple techniques
combined with a good model of the situation that is to be analyzed we can pro-
duce good tracking of a person. To use this approach in another environment
we would have to create a different model of the environment or change the way
the center of mass is detected.

8

7 Appendix

7.1 Time stamps of frames marking the entrance and exit
of the office

OUT
inspacecam163 2016 02 19 13 02 40.jpg
inspacecam163 2016 02 19 13 33 43.jpg

IN
inspacecam163 2016 02 19 13 05 59.jpg
inspacecam163 2016 02 19 13 54 39.jpg

7.2 Movements of center of mass detection over all frame

Figure 6: Trajectory of agent over all frames

7.3 Code

main.py

import the necessary packages

import os

import matplotlib.pyplot as plt

import argparse

import glob

import cv2

9

import numpy as np

from scipy import ndimage

from math import ceil

from tools import *

from room import roomimage, binroomimage

from pykalman import KalmanFilter

from tochroma import *

cv2.namedWindow("Frame", 0)

cv2.namedWindow("Final", 0)

parser = argparse.ArgumentParser(description='Basic Single Person Motion Tracker')

parser.add_argument('-c', action="store", dest="c", type=int)

parser.add_argument('-f', action="store", dest="f", type=int, default = 0)

parser.add_argument('-w', action="store", dest="w", type=int, default=1)

parser.add_argument('-p', action="store", dest="folder", type=str)

parser.add_argument('--fast', action="store_true", dest="fast")

parser.set_defaults(feature=False)

args = parser.parse_args()

errors = []

room = roomimage()

binaryroom = binroomimage()

prev_com = None

center_of_mass = None

miss_detections = []

state = "start"

positions = []

Zero the Statistics Coutners

out_c, desk_c, cabinet_c, not_desk_c = 0,0,0,0

in_to_out, out_to_in = 0,0

intoout,outtoin = [], []

with file("transpoints.txt","w") as f:

x=args.f

for waittime,im3,im4,im_label,frame_name in getimages(args):

prev_com = center_of_mass

room.image = im3

Find difference

th4 = cv2.absdiff(im3, im4)

convert to grayscale

th4 = cv2.cvtColor(th4, cv2.COLOR_BGR2GRAY)

10

remove noise

ret, thresh1 = cv2.threshold(th4, 80, 255, cv2.THRESH_BINARY)

cleanup

thresh1 = cv2.erode(thresh1, (1, 1), iterations=1)

thresh1 = cv2.dilate(thresh1, (1, 1), iterations=4)

thresh1 = cv2.erode(thresh1, (1, 1), iterations=3)

thresh1 = cv2.dilate(thresh1, (1, 1), iterations=4)

binaryroom.image = thresh1

Calculate activity for each spot

office_activity = avg_win(room.office, binaryroom.image)

cab_activity = avg_win(room.cabinet, binaryroom.image)

door_activity = avg_win(room.door, binaryroom.image)

total_activity = avg_win(room.total, binaryroom.image)

CoM = None

CoM1 = None

CoM2 = None

swc1, swc2,center_of_mass = None, None, None

Consider only above some activity level

if total_activity > 0.05:

try: # Successive detection of center of mass

pass 1

CoM = ndimage.measurements.center_of_mass(binaryroom.image)

center_of_mass = [int(CoM[1]), int(CoM[0])]

swc, win = avg_win_center(center_of_mass, 250, binaryroom.image)

Pass 2[w[0][1]:w[1][1],w[0][0]:w[1][0]]

region = binaryroom.image[win[0][1]:win[1][1], win[0][0]:win[1][0]]

CoM1 = ndimage.measurements.center_of_mass(region)

center_of_mass = [win[0][0] + int(CoM1[1]), win[0][1] + int(CoM1[0])]

swc1, win1 = avg_win_center(center_of_mass, 150, binaryroom.image)

pass 3

region = binaryroom.image[win1[0][1]:win1[1][1], win1[0][0]:win1[1][0]]

CoM2 = ndimage.measurements.center_of_mass(region)

center_of_mass = [win1[0][0] + int(CoM2[0]), win1[0][1] + int(CoM2[1])]

swc2, win2 = avg_win_center(center_of_mass, 50, binaryroom.image)

#print "act:", swc, swc1

except:

11

#print "Error or Empty", CoM, CoM1, CoM2

waittime = 0

binaryroom.draw(win, win1, win2)

else:

center_of_mass = None

print "No activity detected"

USE the state machine to decide whether the position is valid

old_state = state

if state and state == "outside" and total_activity > 1:

state = room.changestate(office_activity, cab_activity, door_activity, total_activity)

center_of_mass = None

elif state == "start" and total_activity < 0.08:

if we initialize on a frame with no activity, avoid getting locked outside

pass

elif state == "outside":

pass

center_of_mass = None

else :

state = room.changestate(office_activity, cab_activity, door_activity, total_activity)

print state

if not center_of_mass and prev_com != None:

if state in ["desk","cabinet","room"]:

center_of_mass = tuple(prev_com)

if not args.fast:

room.draw(swc1, swc2, center_of_mass, office_activity, cab_activity, door_activity)

Calculation of statistics

if waittime == 0 and (im_label[0]) :

print "ACTIVITY"

print "DOOR", " OFFICE", " Cabinet" , "COM"

print door_activity, office_activity, cab_activity, center_of_mass

if center_of_mass and swc2:

print "Total ", " Large ", " Medium", " Small"

print total_activity, swc, swc1, swc2, center_of_mass

if im_label[0] and center_of_mass:

error_dist = eucl_dist(center_of_mass,im_label[0])

errors.append(error_dist*error_dist)

if not center_of_mass and not im_label[0]:

errors.append(0)

waittime = 10

if center_of_mass and not im_label[0]:

12

miss_detections.append(x)

waittime = 0

else:

waittime = 10

if old_state == "outside" and state != "outside":

out_to_in += 1

outtoin.append(frame_name)

if old_state != "outside" and state == "outside":

intoout.append(frame_name)

in_to_out += 1

if not center_of_mass:

out_c = out_c + 1

not_desk_c = not_desk_c+ 1

elif is_in(center_of_mass, room.office):

desk_c = desk_c+ 1

elif is_in(center_of_mass, room.cabinet):

cabinet_c +=1

not_desk_c +=1

else:

not_desk_c += 1

TODO::: COUNT TRANSITION FROM AND TO OUTSIDE

positions.append(center_of_mass)

SHOW - skip if need fast

im3 = clip(im3,office)

if not args.fast:

try:

cv2.imshow("Frame", room.image)

cv2.imshow("Final", binaryroom.image)

if x%100 in [3,4,5] and False:

cv2.imwrite("output2/" + str(x)+ "_frame.png", room.image)

cv2.imwrite("output2/" + str(x)+ "_binary.png", binaryroom.image)

except:

pass

key = cv2.waitKey(1) & 0xFF

if key == ord("q"):

13

break

print "RMSE (in pixels)" , np.sqrt(np.average(errors))

print "Missdetected frames", miss_detections

print "COUTNS", out_c, desk_c, cabinet_c, not_desk_c

print "INS AN OUTS" ,in_to_out, intoout, out_to_in, outtoin

x+=1

print "RMSE (in pixels)" , np.sqrt(np.average(errors)), "in ", len(errors),

" labeled images"

print "Missdetected frames", miss_detections

print "COUTNS", out_c, desk_c, cabinet_c, not_desk_c

print "INS AN OUTS" ,in_to_out, intoout, out_to_in, outtoin

for waittime,im3,im4,im_label,f_name in getimages(args):

frst = None

second = None

while len(positions) > 0:

second = positions[0]

del positions[0]

if frst and second:

cv2.line(im3, tuple(frst), tuple(second), (0,0,255), 1)

if second: frst = second

cv2.imwrite("movementx.jpg", im3)

break

room.py

from tools import *

import cv2

14

from math import ceil

from scipy.signal import savgol_filter

class roomimage:

def __init__(self):

self.image = None

important locations

self.office = ((350, 110), (730, 660))

self.cabinet = ((850, 180), (1200, 700))

self.door = ((0, 120), (300, 720))

self.total = ((0, 0), (1280, 720))

self.measurements = []

self.positions = []

self.states =

["working_at_desk","at_cabinets","just_in_the_room","at_the_door","outside_the_room","start"]

self.statemarkings = [self.office[0],self.cabinet[0],self.total[0],self.door[0]]

self.tag = ["desk","cabinet","room","room","outside"]

self.curstate = 5

self.start = True

def changestate(self,office_activity,cab_activity,door_activity,total_activity):

prev_state = self.curstate

room_activity = total_activity*area(self.total) - office_activity*area(self.office) - \

cab_activity*area(self.cabinet) - door_activity*area(self.door)

no_activity = 0

if total_activity == 0:

no_activity =1

transitions = {

"working_at_desk" :

[office_activity+no_activity,cab_activity,room_activity,door_activity,0,0],

"at_cabinets" :

[office_activity,cab_activity+no_activity,room_activity,door_activity,0,0],

"just_in_the_room":

[office_activity,cab_activity,room_activity+no_activity,door_activity,0,0],

"at_the_door" :

[office_activity,cab_activity,room_activity,door_activity,no_activity,0],

"outside_the_room":

[0,0,0,door_activity,no_activity,0],

"start" :

[office_activity,cab_activity,room_activity,door_activity,no_activity,0]}

decision = np.array(transitions[self.states[self.curstate]])

self.curstate = np.argmax(decision/np.sum(decision))

if prev_state == 4 and (self.curstate in [0,1]):

self.curstate = 4

return self.tag[self.curstate]

15

def draw(self,swc1,swc2,center_of_mass,office_activity,cab_activity,door_activity):

if center_of_mass:

if self.start:

self.measurements = np.array([[center_of_mass[0], center_of_mass[1]]])

self.positions = np.array([[center_of_mass[0], center_of_mass[1]]])

self.start = False

else:

com = [center_of_mass[0], center_of_mass[1]]

self.measurements = np.insert(self.measurements, 1, com, axis=0)

self.positions = np.insert(self.measurements, 1, com, axis=0)

if len(self.measurements) > 27:

self.measurements = np.delete(self.measurements, 0, 0)

filtered = savgol_filter(self.measurements[:, 0], 27, 3)

x = np.asarray(np.rint(filtered), dtype=np.dtype("int"))[0]

filtered = savgol_filter(self.measurements[:, 0], 27, 3)

y = np.asarray(np.rint(filtered), dtype=np.dtype("int"))[0]

self.positions = np.delete(self.positions, -1, 0)

center_of_mass = (x, y)

self.positions = np.insert(self.measurements, 1, center_of_mass, axis=0)

if swc2 and center_of_mass and swc2 > 0.05:

cv2.circle(self.image, tuple(center_of_mass), 50, (0, 255, 255), thickness=-1)

elif swc2 and center_of_mass and swc2 > 0.01 and swc1 > 0.005:

cv2.circle(self.image, tuple(center_of_mass), 50, (0, 25, 255), thickness=-1)

else:

cv2.circle(self.image, tuple(center_of_mass), 50, (182, 24, 255), thickness=-1)

cv2.rectangle(self.image, self.office[0], self.office[1], (255, 0, 0),

thickness=min([int((10 * office_activity)), 30]))

cv2.rectangle(self.image, self.cabinet[0], self.cabinet[1], (255, 255, 0),

thickness=min([int(ceil(cab_activity)), 30]))

cv2.rectangle(self.image, self.door[0], self.door[1], (0, 255, 255),

thickness=min([int(ceil(door_activity)), 30]))

if self.curstate < 4:

cv2.circle(self.image, self.statemarkings[self.curstate], 30, (25,255,255),

thickness=-1)

16

class binroomimage:

def __init__(self):

self.image = None

self.office = ((400, 200), (650, 550))

self.cabinet = ((850, 180), (1200, 700))

self.door = ((0, 120), (300, 720))

self.total = ((0, 0), (1280, 720))

def draw(self,win,win1,win2):

cv2.rectangle(self.image, win[0], win[1], (255, 0, 0), thickness=1)

cv2.rectangle(self.image, win1[0], win1[1], (255, 0, 0), thickness=1)

cv2.rectangle(self.image, win2[0], win2[1], (255, 0, 0), thickness=1)

tools.py

import numpy as np

import os

import cv2

import glob

def fix_win(w, limits=(1280, 720)):

w1 = max([w[0][0], 0])

w2 = max([w[0][1], 0])

w3 = min([w[1][0], limits[0]])

w4 = min([w[1][1], limits[1]])

return ((w1, w2), (w3, w4))

def eucl_dist(p1,p2):

dx = np.abs(p1[0] - p2[0])

17

dy = np.abs(p1[1] - p2[1])

return np.sqrt(dx*dx + dy*dy)

def clip(img, w):

return img[w[0][1]:w[1][1], w[0][0]:w[1][0]]

def is_in(p, area):

return p[0] > area[0][0] and p[0] < area[1][0] and p[1] > area[0][1] and p[1] < area[1][1]

def sum_win_center(c, width, img):

w = fix_win((c[1] - width, c[0] - width), (c[1] + width, c[0] + width))

r = np.sum(img[w[0][0]:w[1][0], w[0][1]:w[1][1]])

This function returns the average activity in the area

This funciton sums up the activity white pixels in the window and divides by the total area

w = ((c[0] - width, c[1] - width), (c[0] + width, c[1] + width))

return r

def sum_win(w, img):

This function returns the summed activity in the area

This funciton sums up the activity white pixels in the window and divides by the total area

return np.sum(img[w[0][0]:w[1][0], w[0][1]:w[1][1]])

def avg_win_center(c, width, img):

This function returns the average activity in the area

This funciton sums up the activity white pixels in the window and divides by the total area

w = ((c[1] - width, c[0] - width), (c[1] + width, c[0] + width))

s = np.sum(img[w[0][0]:w[1][0], w[0][1]:w[1][1]])

a = (w[1][0] - w[0][0]) * (w[1][1] - w[0][1])

w = fix_win(((c[0] - width, c[1] - width), (c[0] + width, c[1] + width)))

return s / a, w

def avg_win(w, img):

print w

This function returns the average activity in the area

This funciton sums up the activity white pixels in the window and divides by the total area

return float(np.sum(img[w[0][1]:w[1][1], w[0][0]:w[1][0]])) / ((w[1][0] - w[0][0]) * (w[1][1] - w[0][1]))

def area(w):

return (w[1][0] - w[0][0]) * (w[1][1] - w[0][1])

def getimages(args):

18

try:

read_dictionary = np.load('labels_xy.npy').item()

except:

print "No labels found"

labels = read_dictionary or {}

orig = sorted(glob.glob("day2/*.jpg"))

images = sorted(glob.glob("chroma/*.jpg"))

if args.folder:

orig = sorted(glob.glob(args.folder+"/*.jpg"))

works = args.c or 0

waittime = args.w

for x in range(len(orig) - 1):

skip first x frames using -fs

if x < args.f: continue

print "Image:", x, "of ", len(orig), orig[x + 1][32:]

label = labels.get(os.path.basename(orig[x + 1]))

Pause on labeled images

if label:

print "LABLED IMAGE:", label

waittime = 0

else:

waittime = args.w

label = None

read 2 chromaticity images and computer their absolute difference

or do on the spot

im3 = cv2.imread(orig[x + 1])

im4 = cv2.imread(orig[x])

if works == 1:

pass

im1 = toChroma2(im4)

im2 = toChroma2(im3)

else:

im1 = cv2.imread(images[x])

im2 = cv2.imread(images[x + 1])

yield waittime, im3, im4 , label, os.path.basename(orig[x + 1])

19

