
A SPORTS
MODEL
WITH DRUID

Paddy Green
IMGArena

THE PROBLEM

TRACKING DATA
GPS, Computer Vision

 EVENT DATA
 Actions

FAST DATA
Betting status updates

STATIC DATA
Competition data

PERFORMANCE DATA

DATA SOURCES IN SPORTS
Accelerating data science by joining the data feeds in a Data Warehouse

DATA
WAREHOUSE

Speed of the Score Data

Detail of the Tracking Data

Accuracy of the Event Data

SPORT DATA COLLECTION DUPLICATION

+ Sport data is IOT data and prone to human errors, technical errors and
missed packets

+ Final data size is small but there can be several corrections for the same
event

+

Walk over and the
balls landed on a hill

Ball looks like its
landed on the fairway

Ball is blown off hill
before next shot

Ball lands in the water
drop behind on the tee

Distance travelled over
stroke 1 is 0 feet

SPORT DATA LATENCY

STATIC
DATA

FAST
DATA

EVENT
DATA

TRACKING
DATA

<1s <5s <15s

Each data sources has different lengths of delay

System delay for
computations and
prone to systematic
errorsEntered by umpire or

other official so prone
to human error

Often delayed for
invigilation as derived
from tracking data

+ The data warehouse needs to deliver whatever information it
can as quickly as it can

+

+ These sources could be combined using spark and kafka
streams jobs but we still need to version the rows that are output

+

STORING THE DATA IN DRUID

DEDUPLICATING EVENT DATA

+ Labels can identify rows for deletion from the final table by filtering

+ 2 queries are run in parallel every couple of seconds

+ The first is to upsert today's segment with the latest data
WHERE date = CAST(CURRENT_TIMESTAMP AS DATE)

+ The seconds is to upsert yesterday's segment with the updates that may have
come today

 WHERE date = CAST(CURRENT_TIMESTAMP AS DATE) - INTERVAL ‘1’ DAY
+

ORDERING IN
SPARK STREAMING DRUID RAW

TABLE
DRUID BASE
TABLE

(
 SELECT
 Competition,
 Player,
 Round,
 Hole,
 Stroke,
 CAST(MILLIS_TO_TIMESTAMP(
 LATEST(TIMESTAMP_TO_MILLIS(__time), 2000)
) AS DATE) AS "date",
 LATEST(SurfaceType, 200),
 LATEST(DistanceToPin, 200),
 ….

 WHERE NOT Deleted AND
 __time >= CAST(CURRENT_TIMESTAMP AS DATE)
 - INTERVAL ‘2’ DAY
 GROUP BY 1,2,3,4,5

)

QUERY
REPEATEDLY

Time Competition Player

2022-01-01T10:10:01 1 A Player name
Tournament name
Course name

Hole 1 finished scored 3 Landed on fairway Drive category A

2022-01-01T10:14:11 1 A Landed on green

2022-01-01T10:22:00 1 A Ball in hole

2022-01-01T10:25:03 1 A 1 Penalty on Hole 2 Landed in water Drive category B

2022-01-01T10:34:01 1 A Landed on fairway Drive category C

STATIC DATA

FAST DATA

EVENT DATA

 TRACKING DATA

BUILDING THE TABLE
Each data source needs joined into one single event level table but each competition can be monitored differently and some of the
more detailed data sources won't be available

This means we require separate columns to be generated for each level of detail we receive

INTEGRATING THE TRACKING DATA

Using a session window keyed by event we pre aggregate our tracking data and encode the information we care about

SPARK STREAMING JOB

EventId 1

EventId 2
min gap size T

min gap size T

Time

2022-01-01T10:10:01 {“event”:1, “ball”: [0.0,0.0 0.1,0.0, 0.1,0.0, 1.0,0.0, 1.2,0.0…

2022-01-01T10:12:01 {“event”:2, “ball”: [0.0,0.0 0.1,0.0, 0.1,0.0, 1.0,0.0, 1.2,0.0…

TRACKING
DATA

FEATURE ENCODER

Time

2022-01-01T10:10:01 Drive category A

2022-01-01T10:12:01 Drive category B

INTEGRATING EVENT DATA

+ Keying by action (ball hit, score update ….) is not always clear enough so we also need to dedupe based on the time
+ Versioning of the action are decided based on the timestamp ordering
+ Action 1 has an update that arrives after the latest arrival time so it becomes a separate action Action 3
+ Action 2 has an update that arrives before the latest arrival time so this action is update with a new version
+

ORDERING IN
SPARK STREAMING

Version 1

Version 1

Action1

Action 2

Version 2

Action 3

Version 2

Version 1

Latest arrival time

Latest arrival time

EVENT
DATA

 ……
 LEFT JOIN (
 SELECT …………, [SCORE+STATUS AGGREGATIONS], …………
 FROM [RAW TABLE QUERY]
 GROUP BY 1,2,3,4
)
ON player ….

INTEGRATING THE FAST DATA

+ We derive these high level columns from the Event Data to
ensure the final version of these columns are most accurate

+ In the cases where event data has not been received we convert
the Fast Data into the same format as Event Data to ensure
completeness of the table

+ We add this to the deduplication query also

Score, Status and Important Stats

FAST
DATA

 ……
 LEFT JOIN (
 SELECT
 LOOKUP([STATIC DATA KEYS], [STATIC DATA LOOKUP])
 FROM [RAW TABLE QUERY]
)
ON player ….

INTEGRATING THE STATIC DATA
Names, IDs and Static information

+ We derive these static values from the Event/Fast Data to
ensure the final version of these columns are the most
accurate they could be

+ This Static Data can be integrated during deduplication via
lookups

STATIC
DATA

QUERYING THE DATA IN DRUID

DATA SCIENCE IN GOLF

Rahm

Wentworth

TIME

How’s the course playing for
all golfers now ?

How did the course play for
all golfers last year ?

How has Rahm been
doing this year ?

How did Rahm do
today?

How is Rahm
doing today ?

How’s the course playing for
all golfers this morning ?

We’re dealing with three constantly changing independent dimensions. To predict
anything accurately we’ll need to model all three.

The Golfers Skill

The Conditions on the Course

The Game State

COURSES

GOLFERS

GAME-STATE

A DATA STRUCTURE FOR DATA SCIENCE

COURSESGOLFERS GAME-STATE

Both golfer skill and course conditions will converge their values per round so we should create 3 deduplication jobs generating 3 tables instead of 1

Game-State Fact Courses DimensionGolfer Dimension

__time (PK)
Round (FK)
Player (FK)
Course (FK)
Hole (FK)

Round (PK) roundNo=0 ?
Course (PK)
Player (PK)
StatName
StatValue

Round (PK)
Course (PK)
Hole (PK)
StatName
StatValue

QUERY
REPEATEDLY

DRUID RAW
TABLE

HISTORICAL GOLFER + COURSE FEATURES
Golfer Features require weighing past data to derive current skill and also normalize observed skill based on course difficulty

 SELECT
 [GOLFER SKILLS]
 ….

 FROM (
 [RAW TABLE QUERY]
)
 ….

 LEFT JOIN (
 SELECT [GOLFER SKILLS] / [COURSE DIFFICULTY]
 FROM [RAW TABLE QUERY]
 LEFT JOIN (
 SELECT [COURSE DIFFICULTY]
 FROM [RAW TABLE QUERY]
 GROUP BY 1,2,3,4
)
 ON round….
 WHERE __time
 GROUP BY 1,2,3
)
ON player ….

+ We can create these features when building our gold table

+ To normalise skill we can self join to the course difficulty by adding to the
deduplication query

+ As for weighing the past we can self join to each time range we want to create
features from

DRUID RAW
TABLE

DRUID GOLFER
TABLE

ASYNC MODELS ON RECENT GOLFER + COURSE FEATURES
Game Stat Features change slowly so models requiring them doesn’t need run on every update to the data

ORDERING IN
SPARK STREAMING

DRUID RAW
TABLE

DRUID COURSE
TABLE

ASYNC JOB

SELECT LOOKUP(`course_difficulty`, CONCAT(roundId, courseId, holeId))

 SELECT [ALL GOLFERS SKILL]

SYNC MODELS WITH GAME-STATE
FEATURESModels requiring Game State features need run in stream and results can combined at the end of the pipeline

ORDERING
IN SPARK
STREAMING

DRUID RAW
TABLE DRUID TABLESRUN MODEL

SPARK STREAMING ENRICHMENT JOB

Spark runs query every X
seconds refreshing each
state by key

Feed gets all async model
output and sync model output

DRUID TIPS

Subquery generated results beyond maximum[100000]

+ Using apache superset we can derive almost real time graphics from a full
history of a tournament or golfer

+ Any large nested joins can be reduced using jinja templating

 WHERE 1=1
 {%- for filter in get_filters('tournamentId', remove_filter=True) -%}
 {%- if filter.get('op') == 'IN' -%}
 AND tournamentId IN {{ filter.get('val')|where_in }}
 {%- endif -%}
 {%- endfor -%}

WINDOW FUNCTIONS

SELECT
 MV_ORDINAL(holeno_arr, MV_ORDINAL_OF(hole_score_arr, CAST(second_min_hole_score AS VARCHAR))) AS second_min_hole

FROM (
 SELECT
 ARRAY_AGG(holeNo) AS holeno_arr,
 ARRAY_AGG(hole_score) AS hole_score_arr,
 DS_GET_QUANTILE(DS_QUANTILES_SKETCH(hole_score, 32), 1.0/18.0) AS second_min_hole_score

 FROM (
 SELECT
 holeNo,
 SUBSTR(CAST(AVG(score) AS VARCHAR),1,4) as hole_score
 FROM [PRESENTATION TABLE]
 WHERE __time >= CURRENT_TIMESTAMP - INTERVAL '#' DAY
 AND tournamentId='####'
 GROUP BY 1
)
)

How do we query the 2nd lowest scoring hole on the course ?

COST OPTIMISATIONS KUBERNETES

On-Demand Spot

Coordinator Historical

Overloads Middle Manager

RDS Metastore Router

Zookeeper Broker

Adding more smaller replicas increases availability and allows for cost savings through spot instances

+ Many small replicas are highly available and cheaper to run than 1 large
replica

+ For query nodes, adding more parallelism also helps to ensure the human
errors in the data collection stage don’t affect all feeds of data and only slow
the golfer being recorded

+ Also losing data nodes does not lose data but can occasionally slow the
ingestion, this happens such small amounts of the time that its negligible in
comparison to late corrections data collectors make anyway

 spec:
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: eks.amazonaws.com/capacityType
 operator: In
 values:
 - SPOT
 tolerations:
 - key: "SPOT_INSTANCE"
 operator: "Equal"
 value: "true"
 effect: "NoSchedule"
 topologySpreadConstraints:
 - maxSkew: 1
 topologyKey: topology.kubernetes.io/zone
 whenUnsatisfiable: ScheduleAnyway
 labelSelector:
 matchLabels:
 app: historical

