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THE PROBLEM 



TRACKING  DATA 
GPS, Computer Vision

 EVENT DATA 
 Actions

FAST DATA 
Betting status updates

STATIC DATA
Competition data

PERFORMANCE DATA

DATA SOURCES IN SPORTS
Accelerating data science by joining the data feeds in a Data Warehouse 

DATA 
WAREHOUSE

Speed of the Score Data

Detail of the Tracking Data

Accuracy of the Event Data



SPORT DATA COLLECTION DUPLICATION

+ Sport data is IOT data and prone to human errors, technical errors and 
missed packets 

+ Final data size is small but there can be several corrections for the same 
event

+

Walk over and the 
balls landed on a hill

Ball looks like its 
landed on the fairway

Ball is blown off hill 
before next shot

Ball lands in the water 
drop behind on the tee

Distance travelled over 
stroke 1 is 0 feet



SPORT DATA LATENCY

STATIC 
DATA

FAST
DATA 

EVENT 
DATA

TRACKING  
DATA 

<1s <5s <15s

Each data sources has different lengths of delay

System delay for 
computations and 
prone to systematic 
errorsEntered by umpire or 

other official so prone 
to human error

Often delayed for 
invigilation as derived 
from tracking data

+ The data warehouse needs to deliver whatever information it 
can as quickly as it can

+

+ These sources could be combined using spark and kafka 
streams jobs but we still need to version the rows that are output

+



STORING THE DATA IN DRUID



DEDUPLICATING EVENT DATA

+ Labels can identify rows for deletion from the final table by filtering

+ 2 queries are run in parallel every couple of seconds

+ The first is to upsert today's segment with the latest data
WHERE date = CAST(CURRENT_TIMESTAMP AS DATE)

+ The seconds is to upsert yesterday's segment with the updates that may have 
come today

      WHERE date = CAST(CURRENT_TIMESTAMP AS DATE) - INTERVAL ‘1’ DAY
+

ORDERING IN 
SPARK STREAMING DRUID RAW 

TABLE
DRUID BASE 
TABLE

( 
 SELECT 
 Competition,
 Player,
 Round,
 Hole,
 Stroke,
 CAST(MILLIS_TO_TIMESTAMP(
     LATEST(TIMESTAMP_TO_MILLIS(__time), 2000)
 ) AS DATE) AS "date",
 LATEST(SurfaceType, 200),
 LATEST(DistanceToPin, 200),
 ….

 WHERE NOT Deleted AND 
 __time >= CAST(CURRENT_TIMESTAMP AS DATE) 
 - INTERVAL ‘2’ DAY
 GROUP BY 1,2,3,4,5

)

QUERY
REPEATEDLY



Time Competition Player

2022-01-01T10:10:01 1 A Player  name
Tournament name
Course name

Hole 1 finished scored 3 Landed on fairway Drive category A

2022-01-01T10:14:11 1 A Landed on green

2022-01-01T10:22:00 1 A Ball in hole

2022-01-01T10:25:03 1 A 1 Penalty on Hole 2 Landed in water Drive category B

2022-01-01T10:34:01 1 A Landed on fairway Drive category C

STATIC DATA

FAST DATA 

EVENT DATA

                  TRACKING  DATA 

BUILDING THE TABLE
Each data source needs joined into one single event level table but each competition can be monitored differently and some of the 
more detailed data sources won't be available

This means we require separate columns to be generated for each level of detail we receive 



INTEGRATING THE TRACKING DATA

Using a session window keyed by event we pre aggregate our tracking data and encode the information we care about

SPARK STREAMING JOB

EventId 1

EventId 2
min gap size T

min gap size T

Time

2022-01-01T10:10:01 {“event”:1, “ball”: [0.0,0.0 0.1,0.0, 0.1,0.0, 1.0,0.0, 1.2,0.0…

2022-01-01T10:12:01 {“event”:2, “ball”: [0.0,0.0 0.1,0.0, 0.1,0.0, 1.0,0.0, 1.2,0.0…

TRACKING  
DATA 

FEATURE ENCODER

Time

2022-01-01T10:10:01 Drive category A

2022-01-01T10:12:01 Drive category B



INTEGRATING EVENT DATA

+ Keying by action (ball hit, score update ….) is not always clear enough so we also need to dedupe based on the time
+ Versioning of the action are decided based on the timestamp ordering
+ Action 1 has an update that arrives after the latest arrival time so it becomes a separate action Action 3
+ Action 2 has an update that arrives before the latest arrival time so this action is update with a new version 
+

ORDERING IN 
SPARK STREAMING

Version 1

Version 1

Action1

Action 2

Version 2

Action 3

Version 2

Version 1

Latest arrival time

Latest arrival time

EVENT 
DATA



 
 

           ……
 LEFT JOIN (
    SELECT …………, [SCORE+STATUS AGGREGATIONS], …………
    FROM [RAW TABLE QUERY]
    GROUP BY 1,2,3,4
 )
ON player ….

          

INTEGRATING THE FAST DATA 

+ We derive these high level columns from the Event Data to 
ensure the final version of these columns are most accurate

+ In the cases where event data has not been received we convert 
the Fast Data into the same format as Event Data to ensure 
completeness of the table

+ We add this to the deduplication query also

Score, Status and Important Stats

FAST 
DATA 



          ……
 LEFT JOIN (
    SELECT 
    LOOKUP([STATIC DATA KEYS],  [STATIC DATA LOOKUP])
    FROM [RAW TABLE QUERY]
 )
ON player ….

INTEGRATING THE STATIC DATA 
Names, IDs and Static information

+ We derive these static values from the Event/Fast Data to 
ensure the final version of these columns are the most 
accurate they could be

+ This Static Data can be integrated during deduplication via 
lookups

STATIC 
DATA



QUERYING THE DATA IN DRUID



DATA SCIENCE IN GOLF

Rahm

Wentworth

TIME

How’s the course playing for 
all golfers now ?

How did the course play for 
all golfers last year ?

How has Rahm been 
doing this year ?

How did Rahm do 
today?

How is Rahm 
doing today ?

How’s the course playing for 
all golfers this morning ?

We’re dealing with three constantly changing independent dimensions. To predict 
anything accurately we’ll need to model all three.

The Golfers Skill

The Conditions on the Course

The Game State

COURSES

GOLFERS

GAME-STATE



A DATA STRUCTURE FOR DATA SCIENCE

COURSESGOLFERS GAME-STATE

Both golfer skill and course conditions will converge their values per round so we should create 3 deduplication jobs generating 3 tables instead of 1

Game-State Fact Courses DimensionGolfer Dimension

__time (PK)
Round (FK)
Player (FK)
Course (FK)
Hole (FK)

Round (PK) roundNo=0 ?
Course (PK)
Player (PK)
StatName
StatValue

Round (PK)
Course (PK)
Hole (PK)
StatName
StatValue

QUERY
REPEATEDLY

DRUID RAW 
TABLE



HISTORICAL GOLFER + COURSE FEATURES
Golfer Features require weighing past data to derive current skill and also normalize observed skill based on course difficulty 

 
 

 SELECT 
  [GOLFER SKILLS]
 ….

 FROM (
    [RAW TABLE QUERY]
 )
 ….

 LEFT JOIN (
    SELECT [GOLFER SKILLS] / [COURSE DIFFICULTY]
    FROM [RAW TABLE QUERY]
    LEFT JOIN (
        SELECT [COURSE DIFFICULTY]
        FROM [RAW TABLE QUERY]
        GROUP BY 1,2,3,4
     )
    ON round….
    WHERE __time 
    GROUP BY 1,2,3
 )
ON player ….

+ We can create these features when building our gold table

+ To normalise skill we can self join to the course difficulty by adding to the 
deduplication query

+ As for weighing the past we can self join to each time range we want to create 
features from

DRUID RAW 
TABLE

DRUID GOLFER 
TABLE



ASYNC MODELS ON RECENT GOLFER + COURSE FEATURES
Game Stat Features change slowly so models requiring them doesn’t need run on every update to the data

ORDERING IN 
SPARK STREAMING

DRUID RAW 
TABLE

DRUID COURSE 
TABLE

ASYNC JOB
 

 

SELECT LOOKUP(`course_difficulty`, CONCAT(roundId, courseId, holeId))

 

 
 

     SELECT [ALL GOLFERS SKILL]

 



SYNC MODELS WITH GAME-STATE 
FEATURESModels requiring Game State features need run in stream and results can combined at the end of the pipeline

ORDERING 
IN SPARK 
STREAMING

DRUID RAW 
TABLE DRUID TABLESRUN MODEL

SPARK STREAMING ENRICHMENT JOB

Spark runs query every X 
seconds refreshing each 
state by key

Feed gets all async model 
output and sync model output



DRUID TIPS



Subquery generated results beyond maximum[100000]

+ Using apache superset we can derive almost real time graphics from a full 
history of a tournament or golfer

+ Any large nested joins can be reduced using jinja templating 

        WHERE 1=1
      {%- for filter in get_filters('tournamentId', remove_filter=True) -%}
      {%- if filter.get('op') == 'IN' -%}
        AND tournamentId IN {{ filter.get('val')|where_in }}
      {%- endif -%}
      {%- endfor -%}

     



WINDOW FUNCTIONS

SELECT 
  MV_ORDINAL(holeno_arr, MV_ORDINAL_OF(hole_score_arr, CAST(second_min_hole_score AS VARCHAR))) AS second_min_hole
  
FROM (
  SELECT
    ARRAY_AGG(holeNo) AS holeno_arr, 
    ARRAY_AGG(hole_score) AS hole_score_arr,
    DS_GET_QUANTILE(DS_QUANTILES_SKETCH(hole_score, 32), 1.0/18.0) AS second_min_hole_score
  
  FROM (
    SELECT
      holeNo,
      SUBSTR(CAST(AVG(score) AS VARCHAR),1,4) as hole_score
    FROM [PRESENTATION TABLE]
    WHERE __time >= CURRENT_TIMESTAMP - INTERVAL '#' DAY
    AND tournamentId='####'
    GROUP BY 1
  )
) 

How do we query the 2nd lowest scoring hole on the course ?



COST OPTIMISATIONS KUBERNETES

On-Demand Spot

Coordinator Historical

Overloads Middle Manager

RDS Metastore Router

Zookeeper Broker

Adding more smaller replicas increases availability and allows for cost savings through spot instances 

+ Many small replicas are highly available and cheaper to run than 1 large 
replica

+ For query nodes, adding more parallelism also helps to ensure the human 
errors in the data collection stage don’t affect all feeds of data and only slow 
the golfer being recorded

+ Also losing data nodes does not lose data but can occasionally slow the 
ingestion, this happens such small amounts of the time that its negligible in 
comparison to late corrections data collectors make anyway 

 

    
   spec:
     affinity:
       nodeAffinity:
         requiredDuringSchedulingIgnoredDuringExecution:
           nodeSelectorTerms:
             - matchExpressions:
                 - key: eks.amazonaws.com/capacityType
                   operator: In
                   values:
                     - SPOT
     tolerations:
       - key: "SPOT_INSTANCE"
         operator: "Equal"
         value: "true"
         effect: "NoSchedule"
     topologySpreadConstraints:
       - maxSkew: 1
         topologyKey: topology.kubernetes.io/zone
         whenUnsatisfiable: ScheduleAnyway
         labelSelector:
           matchLabels:
             app: historical


