
Real time 3D Scan calibration

Patrick Green

January 4, 2021

1 Introduction

The aim of this coursework was to estimate the 3D reconstruction accuracy of data obtained
from a stereo depth sensor. The data in question consists of 4 greyscale image sets tracking a
glass sheet covered with textured paper. Each image set corresponds to a movement of the plane
relative to the camera: three of the sets show movement in the X, Y, and Z axes, while the fourth
one shows movement of the depth sensor in the Z axis.

Since the glass/paper plane is assumed to be flat, ideal reconstruction would also produce a flat
2D plane in its region. However, the texture on the paper sheet causes the sensor to interpret
it at different depths, thereby causing reconstruction errors. The accuracy is then measured by
calculating the best fit 2D plane equation. This allows to calculate the residual errors at each
point, and the overall root-mean-square error. The latter two are then presented as results.

Note that this assignment was written in Python and thus references various Python modules.

2 Method

The original data obtained from each individual image contained a set of 1200x1200 pixels, each
of which stored two sets of values:

• The RGB color values - all of these were equal due to the image being grayscale

• The XYZ positional values detected by the stereo sensor

The analysis process consisted of three main stages, each of which are further described in detail:

• Data Selection - identifying the set of values from the dataset relevant to the analysis

• Analysis Algorithm - invoking a plane fitting algorithm and calculating the residuals

• Tracking Algorithm - maintaining the selected dataset between image changes

2.1 Data Selection

Knowing that the two cameras do not see the same portion of the scene, some areas of the image
will contain erroneous data. Furthermore, the image sets visualise the movement of the glass
sheet, which means that the sheet is not always guaranteed to fill the entire field of view of
both cameras. These two properties meant that accurate analysis could only be carried out on
a specific region of the image. This region is further referred to as the patch.

1

Selection of the patch was based on examining the image set, and identifying a region of the
textured sheet that is present on the screen for the majority of the images. Since each image
set described different motions of the sheet, the aforementioned region of one set would not
necessarily be applicable to another set. This suggested specifying a patch for each of the four
image sets.

In addition, it was known that the errors resulting from differences between the cameras were
concentrated at the bottom of the image, and hence care was taken for the patch not to extend
too far down the full image. Finally, to avoid image boundary problems, the patch was never
placed closer than 50 pixels to any edge.

Hence, the chosen patches per dataset (referenced to the first image of the set) were as follows:

• zstatic - 500x500 pixels at (300, 200).

• xmove - 100x900 pixels at (50, 200). This allows the patch to be on screen for all images
in the set, and never exceed the 50 pixel edge boundary.

• ymove - 900x100 pixels at (100, 50). The patch is on the screen only for the first 6 images.

• zmove - 500x500 pixels at (300, 200).

2.2 Plane Fitting

To calculate the RMS for each patch, it was required to fit a plane. First, the patch was cropped
about the x and y coordinates of its top left and bottom right corners. Next, a method of least
squares was used to solve for the coefficients of the plane equation shown below.

z = ax+ by + c (1)

The numpy.linalg.lstsq method was used to calculate the parameters. The method uses the
matrix A holding every point of the mesh grid as a row, and the value for x, y, z and 1 in each
column. A scatter matrix S is then computed from A after subtracting the center of mass of the
data and multiplying itself by its transpose S = DTD. The normal vector of the best-fit plane
is then found by taking the eigenvector of S with the smallest eigenvalue. The method returns
the coefficients, and the normal vector and plane equation take the following form.

z = ax+ by + c n = {−a/c,−b/c, 1/c} (2)

The residuals ei,j are then computable by taking any point given by the plane equation r,
subtracting this from the original data point p, and taking the dot product with the normal
vector of the plane to find the perpendicular distance:

ei,j = (r − p)ṅ RMS =
√∑

e2i,j (3)

The RMS was then calculated by taking the square root of the sum of the square of the residuals
ei,j , as shown in the equation above.
The Python code of this implementation is as follows:

def fitplane_m(patch):
surface = np.copy(patch)
X_p = surface[:, :, 0]
Y_p = surface[:, :, 1]
Z_p = surface[:, :, 2]

2

patch = patch.reshape(-1,3)
size = patch.shape[0]

A = np.c_[patch[:,0], patch[:,1], np.ones(size)]

C, r, rank, s = np.linalg.lstsq(A,patch[:,2])

Z = C[0] * X_p + C[1] * Y_p + C[2]
Xr = X_p - X_p
Yr = Y_p - Y_p
Zr = Z_p - Z
n.(p-r)
residuals = (-C[0] / C[2]) * Xr + (-C[1] / C[2]) * Yr + (1 / C[2]) * Zr
rms = np.sqrt(np.average(np.square(r)))
return C, rms, residuals

As such, the algorithm enabled straightforward calculation of the residual array for any patch.

2.3 Tracking Algorithm

To ensure the RMS plots show the correct correlation, the exact same patch is used in adjacent
frames. To do this, the translation of the patch was tracked through the set of images using
a method of cross correlation, implemented with the phaseCorrelate method of Python’s cv2
package.

Cross correlation works by taking single strips from each image that lie in the same position, and
working out the difference in phase between them. In the images below, comparison between the
columns in the left and the right images is of interest.

Let A be a column in the left image and B be a column in the right. The phase distribution
can be calculated by taking the Fourier transform of the multiplication of both arrays’ inverse
Fourier transform, where one array is reversed. The phase difference is then calculated by finding
the argument of the maximum in this distribution. The average of each column is the overall

3

phase shift in the image.

F{A} = a F{B[:: −1]} = b∗ phasey = argmax(F{a× b∗}) (4)

The same operation is done with each row, giving a translation vector [phasex, phasey]. In order
to rescale the image between adjacent frames, a similar approach was taken, but instead the
phase difference between the two images was examined in polar coordinates.

Taking the center of the patch as the origin for the conversion to polar coordinates, the new x
and y images are computed using the equations below.

Patch_center = (cx, cy) r =
√

(x− cx)2 + (y − cy)2 theta = arctan ((y − cy)/(x− cx)) (5)

The Python code to implement the above algorithm is as follows:

def reproject_image_into_polar(data, origin):
ny, nx = data.shape[:2]
if origin is None:

origin = (nx//2, ny//2)

Determine that the min and max r and theta coords
x, y = index_coords(data, origin=origin)
r, theta = cart2polar(x, y)

Make a regular (in polar space) grid based on the min and max r & theta
r_i = np.linspace(r.min(), r.max(), nx)
theta_i = np.linspace(theta.min(), theta.max(), ny)
theta_grid, r_grid = np.meshgrid(theta_i, r_i)

Project the r and theta grid back into pixel coordinates
xi, yi = polar2cart(r_grid, theta_grid)
xi += origin[0] # We need to shift the origin back to
yi += origin[1] # back to the lower-left corner...
xi, yi = xi.flatten(), yi.flatten()
coords = np.vstack((xi, yi)) # (map_coordinates requires a 2xn array)

4

Reproject each band individually and the restack
bands = []
for band in data.T:

zi = map_coordinates(band, coords, order=1)
bands.append(zi.reshape((nx, ny)))

output = np.dstack(bands)
return output, r_i, theta_i

By taking the cross correlation, the phase difference in the radial dimension dr can be computed.
dr can then be utilized to rescale an arbitrary sized rectangle about its center, using the following
equations.

(w, h) = (width, height) w = w + dr/
√

1 + (h/w) h = h+ dr/
√
1 + (w/h) (6)

In addition, to make the cross correlation easier to detect, instead of using the original gray scale
image, the image was filtered with a threshold equal to a multiple of its average brightness.
This set areas of the brightness below this threshold to zero, allowing for a more distinguishable
difference in phase. An example of a thresholded image used for the cross correlation is shown
below, for Cartesian and polar coordinates.

3 Results

3.1 Overall Performance

The tracking worked well in the cases of the xmove and the ymove plane data, where the
thresholding coefficient was 1.5. The cross correlation was able to recognize patterns of texture
over multiple images, as the lighting stayed consistently distributed across the image. This
allowed for a similar threshold to be used before the cross correlation, in order to enhance
specific patterns in the image. Below is a good example of when the tracking worked, shown
using part of the y plane data set. Over the time step from left to right, the patch has moved
downwards with the sheet, staying in the same relative position.

5

However, the tracking method struggled with both the zmove and zstatic plane data sets, as
the lighting changed considerably, which gave rise to variations in the phase between adjacent
images. This is evident in the images below, taken from the static plane data set. Over the
time step from left to right, it is clear that the plate has moved away from the camera, yet the
patch has failed to rescale, and remains the same size. This suggested reducing the thresholding
coefficient to 1.0 for the zstatic set. The coefficient was left at 1.5 for the zmove set.

3.2 RMS Against Movement Across Axis

The calculated RMS values allowed to easily visualize the reconstruction accuracy across each
data set. For this, a reference value was assigned to every image of each data set:

• For the zstatic and zmove datasets, this was the average Z value.

• For the xmove and ymove sets, this was the center X or Y value of the patch. Note that
the ymove dataset only contains 6 points, as explained in 2.1.

This allowed to plot a single graph for each dataset, plotting the reference value against RMS.
These graphs are as follows:

6

(a) The RMS against average Z value of the
zstatic dataset

(b) The RMS against average Z value of the
zmove dataset

(c) The RMS against central X value of the
xmove dataset

(d) The RMS against central Y value of the
ymove dataset

It can be seen that the trends are not consistent for different datasets. The zstatic dataset
appears to gradually increase in RMS as the source gets closer to the image, also increasing
sharply once the panel has moved too far from the sensor. The zmove dataset appears to
generally show an upwards trend as well, with the RMS increasing as the plane is moved further
away from the sensor. The x axis on each of these graphs plots the diagonal length of the patch,
which is inversely proportional to the sheet’s distance from the camera. It is also seen that the
low-Z RMS values of zstatic are considerably larger than any RMS value for z data set, further
leading to suspicions that said detections may have been flawed. An assumption can thus be
made that the sensor does not work at all after a specific distance, and that it is also more error
prone the closer the sheet is held.

For the xplane plot, it is obvious that the error reduces the further to the right the patch is
moved. With the yplane plot it is discovered that the error is largest when the patch is at the
top and the bottom of the camera, and reduces the closer to the center it gets. However, neither
error plot shows particularly smooth curves, which could be due the the patch not being tracked
perfectly. From these results it can be assumed that the errors are high at the extremities of
the sensor. Thus it can be inferred that the sensor sits level with the camera in the vertical
dimension, but sits further to the right of the camera in the horizontal.

3.3 Core Data Table

In order to present data obtained from each individual image, four tables were created, one per
image set. For each image in its set, they indicate the size of the patch, the obtained RMS, and

7

the number of outlier pixels - data points whose residuals are more than 5 times the value of the
RMS. The tables are as follows:

Table 1: Data obtained for zstatic

Image Name Patch Size RMS Outliers
plane_1 500x500 0.000838595853324 0
plane_2 498x497 0.000731488965102 66
plane_3 498x497 0.000574810665347 0
plane_4 425x424 0.000245128257334 79
plane_5 373x372 0.000183003742057 40
plane_6 369x368 0.00043299739139 20
plane_7 369x368 0.000712188629862 0
plane_8 369x368 0.00105651878929 0
plane_9 369x368 0.00161889378992 0
plane_10 369x368 0.00184708297143 0
plane_11 369x368 0.00322334027933 0

In the above table it can be noted that most images have no outliers, though the few that do,
appear to be located around the point where RMS begins to increase, as the sheet is too far from
the sensor to function. This implies that the increased RMS is due to both poor tracking (as
assumed before) and the sensor’s functionality being impacted as the patch moves out of range.

Table 2: Data obtained for xmove

Image Name Patch Size RMS Outliers
planex_0004 100x900 0.000554471342961 0
planex_0008 100x900 0.000507144083826 0
planex_0012 100x900 0.0004375587023 0
planex_0016 100x900 0.00040250978544 0
planex_0020 100x900 0.000392016674409 0
planex_0024 100x900 0.000374092926782 24
planex_0028 100x900 0.000343853071251 0
planex_0032 100x900 0.000359262931683 28
planex_0036 100x900 0.0003326686517 30
planex_0040 100x900 0.000346005319161 55
planex_0044 100x900 0.000342467606148 0

For the xmove the outliers exist where the patch is furthest to the right. This seems weird as
the RMS is never as much as a multiple of 5 larger or smaller.

8

Table 3: Data obtained for ymove

Image Name Patch Size RMS Outliers
planey_06 900x100 0.000606973636011 0
planey_11 900x100 0.000461616146083 0
planey_16 900x100 0.000420548611793 0
planey_21 900x100 0.000471577836028 0
planey_26 900x100 0.000482248269004 0
planey_31 900x100 0.000570198258386 0

The ymove table has no outliers so we can assume that the sensors functionality varies as the
RMS insinuates.

Table 4: Data obtained for zmove

Image Name Patch Size RMS Outliers
planez_01 500x500 0.000987374627712 0
planez_04 500x500 0.000868365445868 0
planez_07 488x482 0.000686700738521 0
planez_10 466x460 0.000576914850785 30
planez_13 431x425 0.000449638364089 0
planez_16 390x384 0.000326042991249 56
planez_19 369x363 0.000238867955045 110
planez_22 350x344 0.000246150549064 16
planez_25 350x344 0.000345236000602 54
planez_28 350x344 0.000483857967057 0
planez_31 350x344 0.000566167547685 0

For the zmove dataset the largest amount of outliers lye in the center of the varying z positions.
As the error at the boundaries is roughly 5 times the error in the center it is likely the outliers are
due to the sensor but are only visible when the center and plates relative positions are optimal.

3.4 Residual Color Maps

To look at how the error varied throughout a patch, the residual array of each patch was obtained.
Each point ei of this array was then colored according to its value relative to the RMS value σ:

• Red - if ei < −σ

• Yellow - if −σ < ei < 0

• Green - if 0 < ei < σ

• Blue - if ei > σ

What follows is a set of side-by-side comparisons: the middle image of each dataset was chosen,
and a 500x500 patch starting at (400, 200) was selected. Figures were then plotted for both the
selected patch, and its colored residual array.

9

Figure 2: The patch and residual array for the zstatic dataset

Figure 3: The patch and residual array for the xmove dataset

Figure 4: The patch and residual array for the ymove dataset

10

Figure 5: The patch and residual array for the zmove dataset

It is seen that mapping the colored array to the patch is generally not obvious. Certain texture
shapes can rarely be identified on the colored array, for example, the xmove residual color map
contains a vague outline of a rectangle, which is also present on the patch image.
One observation that can be made from this data is that the majority of positive errors (blue
and green points) are situated near the edges of the patch. This is the case for all datasets
except zstatic, which instead contains a mixture of blue and red points (positive and negative
extremes) in the middle. This may be explained by the least squares plane fitting method being
biased to the center of the patch.
However, correlations between the patch pixel color and residual point color are not clear.
Nonetheless, these images verify that the 3D image reconstruction always creates plenty of resid-
ual offset values across the entire patch.

4 Overall Observations and Conclusions

The most important observation for the obtained results is that not all datasets perform equally.
It is especially obvious with the zstatic and zmove sets: the residual array of zstatic differed
the most from the rest, and the performance of both of these sets was hampered by detection
problems. These could include image blurring and a significant decrease in lightness for the
later images of both sets. Image blurring can be solved by readjusting the camera focus, either
manually or through autofocus, whereas equalizing lighting may be possible by having a uniform
light source, placed alongside the movement axes.
The sensor itself is assumed to lie to the right of the image and is level with the camera, assuming
the error is largest at the boundaries of its view. Its performance also reduces the closer the
sheet sits to the camera, as the sensor itself is picking up more texture than it should. The error
also increases substantially once the diagonal of the patch reduces to a size of 440. Furthermore,
it was inferred that for the zstatic set, the increased RMS is mainly due to the sensor, whereas
for zplane, RMS is most affected by poor tracking. From this it can be assumed that the zstatic
data set gives a better interpretation of the sensor’s performance over the Z dimension.
It can be seen that while the generated tables already contain the information of the RMS
graphs, the latter do not specify the time order of these points. This turned out to be crucial
to identifying RMS trends, which could not be seen from the graphs, but were present in the
tables. This suggests that further performance measurements are best shown in an ordered list,
rather than a scatter plot, since this also allows to link RMS to the number of outliers.
Overall, it can be concluded that while reconstruction was generally not a problem for a well-
defined patch, tracking performance is nonetheless much better across the X and Y axes.

11

5 Appendix - Code Listings

5.1 main.py

from fetch import load_mesh
import cv2
from flask import request, Response, Flask
import numpy as np
#import serial # COMMENT OUT ON DICE
from lib.match import phase1, reproject_image_into_polar, fitplane_m
import matplotlib.pyplot as plt
from matplotlib import colors

plots = {"plane": (-1,11, lambda src: src < 1.0 * np.sum(src) / (src.shape[0]
* src.shape[1]), True, 2, np.array([300, 200]),np.array([500, 500])),

"planex": (-1,11, lambda src: src < 1.5 * np.sum(src) / (src.shape[0]
* src.shape[1]), False, 0,np.array([50, 200]),np.array([100, 900])),

"planey": (-1,11, lambda src: src < 1.5 * np.sum(src) / (src.shape[0]
* src.shape[1]), False, 1,np.array([100, 50]),np.array([900, 100])),

"planez": (-1,11, lambda src: src < 1.5 * np.sum(src) / (src.shape[0]
* src.shape[1]), True, 2,np.array([300, 200]),np.array([500, 500]))}

application = Flask(__name__, static_path="/static")

def show(plotname):
startafter, end, thresh, resize, xaxis, orgs, width = plots[plotname]
start = True
s = orgs
w = width
results = []
for i, data in enumerate(load_mesh(plotname)):

if i > startafter and i < end:
grey scale image anyway so just call first indices
frame = data[:, :, 0] * 255.0

if start:
last = frame

Translation
dp, conv1 = phase1(last, frame, thresh)
s = s + dp

conv2 = np.copy(conv1)
if resize:

framep, r_i, theta_i = reproject_image_into_polar(data[:, :, 0:3] * 255.0,
(s + w / 2.0).astype("int"))

framep = framep[:, :, 0]

if start:
lastp = framep

12

Rescale size
dp, conv2 = phase1(lastp, framep, thresh)
if dp[1] < 0:

w[0]+=int(dp[1] / np.sqrt(1+w[1]/w[0]))
w[1]+=int(dp[1] / np.sqrt(1+w[0]/w[1]))
s[0]-=int(dp[1] / 2*np.sqrt(1+w[1]/w[0]))
s[1]-=int(dp[1] / 2*np.sqrt(1+w[1]/w[0]))

lastp = framep

start = False

Check if still visable
if np.all([s + w < np.asarray(frame.shape), 0 < s]):

plt.close("all")

e = s+w
patch = data[s[1]:e[1], s[0]:e[0], 3:]
Save stats
C, rms, residuals = fitplane_m(patch)

Create residual array
heatmat = np.copy(residuals)
cmap = colors.ListedColormap(['red','yellow','green','blue'])
bounds=[np.min(residuals),-rms,0,rms,np.max(residuals)]
norm = colors.BoundaryNorm(bounds, cmap.N)

plot residual color map
error = plt.figure(num="Errors")
img = plt.imshow(residuals, interpolation='nearest', origin='upper',

cmap=cmap, norm=norm)
plt.colorbar(img, cmap=cmap, norm=norm, boundaries=bounds,

ticks=[np.min(residuals),-rms,0,rms,np.max(residuals)])
error.savefig("demo_results/res_"+plotname+str(i)+".png")

Save datapoint
c = s+(w/2.0)
datapoint = np.array([c[0], c[1], np.sqrt((w[0]/2.0)**2+(w[1]/2.0)**2), rms])
results.append(datapoint)
print "{}_{} / Size {} / RMS {} / {} outliers".format(plotname, i, width,

rms, np.sum(residuals[:]>5*rms))
Draw box
cv2.rectangle(frame, tuple(s), tuple(s + w), (255,0,0), 2)
cv2.circle(frame, tuple(s+(w/2)), 3, (255,0,0), -1)

last = frame

img = np.c_[frame,conv1,conv2]
ret, jpeg = cv2.imencode('.jpg', frame)

13

#frame = serial.to_bytes(jpeg) # COMMENT OUT ON DICE
frame = jpeg.tobytes() # COMMENT OUT ON LOCAL MACHINE
yield (b'--frame\r\n'b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n\r\n')
cv2.imwrite("demo_results/"+plotname+str(i)+".jpg",last)

data = np.stack(results)
np.save("results/results_"+plotname+".npy",data)

@application.route('/<plotname>')
def run(plotname):

return Response(show(plotname), mimetype='multipart/x-mixed-replace; boundary=frame')

if __name__ == "__main__":
application.run(debug=True, host='0.0.0.0', port=3000)

5.2 fetch.py

import scipy.io
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import glob
import re

def load_mesh(name):
for frame in sorted(glob.glob("data/*.mat")):

if re.sub("^[^\/]+\/|_[0-9]*\.mat", "", frame) == name:
mat = scipy.io.loadmat(frame)
XYZ = np.asarray(mat['XYZ'])
Img = np.asarray(mat['Img'])

m = XYZ.shape[0]
n = XYZ.shape[1]
RGBXYZ = np.zeros((m,n,6))

X = XYZ[:,:,0]
Y = XYZ[:,:,1]
Z = XYZ[:,:,2]
K = np.isnan(X) | np.isinf(X) | np.isnan(Y) | np.isinf(Y) | np.isnan(Z)

| np.isinf(Z)

X[K] = 0
Y[K] = 0
Z[K] = 0

RGBXYZ[:, :, 0] = Img[:,:]
RGBXYZ[:, :, 1] = Img[:,:]
RGBXYZ[:, :, 2] = Img[:,:]
RGBXYZ[:, :, 3] = X
RGBXYZ[:, :, 4] = Y
RGBXYZ[:, :, 5] = Z

14

yield RGBXYZ

5.3 match.py

import cv2
import numpy as np
from scipy.ndimage import map_coordinates

def phase1(src1,src2, thresh):
cv2.imwrite("results/1.jpg",src1)
cv2.imwrite("results/2.jpg",src2)
src1 = np.abs(cv2.imread("results/1.jpg", 0)-255)
src2 = np.abs(cv2.imread("results/2.jpg", 0)-255)

src1[thresh(src1)] = 0
src2[thresh(src2)] = 0

src1 = np.float32(src1)
src2 = np.float32(src2)

#p = cv2.phaseCorrelate(src1,src2) # COMMENT OUT ON DICE
p, error = cv2.phaseCorrelate(src1,src2) # COMMENT OUT ON LOCAL MACHINE
r = np.array([p[0],p[1]]).astype("int")
return r, src2

def fitplane_m(patch):
surface = np.copy(patch)
X_p = surface[:, :, 0]
Y_p = surface[:, :, 1]
Z_p = surface[:, :, 2]

patch = patch.reshape(-1,3)
size = patch.shape[0]

A = np.c_[patch[:,0], patch[:,1], np.ones(size)]

C, r, rank, s = np.linalg.lstsq(A,patch[:,2])

Z = C[0] * X_p + C[1] * Y_p + C[2]
Xr = X_p - X_p
Yr = Y_p - Y_p
Zr = Z_p - Z
residuals = (-C[0] / C[2]) * Xr + (-C[1] / C[2]) * Yr + (1 / C[2]) * Zr
rms = np.sqrt(np.average(np.square(residuals)))
return C, rms, residuals

def index_coords(data, origin=None):
"""Creates x & y coords for the indicies in a numpy array "data".
"origin" defaults to the center of the image. Specify origin=(0,0)
to set the origin to the lower left corner of the image."""

15

ny, nx = data.shape[:2]
if origin is None:

origin_x, origin_y = nx // 2, ny // 2
else:

origin_x, origin_y = origin
x, y = np.meshgrid(np.arange(nx), np.arange(ny))
x -= origin_x
y -= origin_y
return x, y

def cart2polar(x, y):
r = np.sqrt(x**2 + y**2)
theta = np.arctan2(y, x)
return r, theta

def polar2cart(r, theta):
x = r * np.cos(theta)
y = r * np.sin(theta)
return x, y

def reproject_image_into_polar(data, origin):
ny, nx = data.shape[:2]
if origin is None:

origin = (nx//2, ny//2)

Determine that the min and max r and theta coords
x, y = index_coords(data, origin=origin)
r, theta = cart2polar(x, y)

Make a regular (in polar space) grid based on the min and max r & theta
r_i = np.linspace(r.min(), r.max(), nx)
theta_i = np.linspace(theta.min(), theta.max(), ny)
theta_grid, r_grid = np.meshgrid(theta_i, r_i)

Project the r and theta grid back into pixel coordinates
xi, yi = polar2cart(r_grid, theta_grid)
xi += origin[0] # We need to shift the origin back to
yi += origin[1] # back to the lower-left corner...
xi, yi = xi.flatten(), yi.flatten()
coords = np.vstack((xi, yi)) # (map_coordinates requires a 2xn array)

Reproject each band individually and the restack
bands = []
for band in data.T:

zi = map_coordinates(band, coords, order=1)
bands.append(zi.reshape((nx, ny)))

output = np.dstack(bands)
return output, r_i, theta_i

16

5.4 plot.py

import matplotlib.pyplot as plt
import numpy as np

datax = np.load("results/results_planex.npy")
imgx = plt.figure(num="RMS vs X scene position")
plt.scatter(datax[:,0], datax[:,-1])
plt.ylim([0, np.max(datax[:,-1])])
imgx.show()

datay = np.load("results/results_planey.npy")
imgy = plt.figure(num="RMS vs Y scene position")
plt.scatter(datay[:,1], datay[:,-1])
plt.ylim([0, np.max(datay[:,-1])])
imgy.show()

dataz = np.load("results/results_planez.npy")
imgz = plt.figure(num="RMS vs average Z")
plt.scatter(dataz[:,0], dataz[:,-1])
plt.ylim([0, np.max(dataz[:,-1])])
imgz.show()

data = np.load("results/results_plane.npy")
img = plt.figure(num="RMS vs average Z - static")
plt.scatter(data[:,0], data[:,-1])
plt.ylim([0, np.max(data[:,-1])])
img.show()

plt.show(block=True)

5.5 draw_single.py

import scipy.io
import cv2
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from lib.match import fitplane_m
from matplotlib import colors

plt.close("all")

s = np.array([400, 200]) # top left of patch
w = np.array([500, 500]) # col and row count of patch
e = s+w # bottom right of patch

mat = scipy.io.loadmat('data/planez_16.mat')

create data array
XYZ = np.asarray(mat['XYZ'])

17

Img = np.asarray(mat['Img'])
m = XYZ.shape[0]
n = XYZ.shape[1]
data = np.zeros((m,n,6))
X = XYZ[:,:,0]
Y = XYZ[:,:,1]
Z = XYZ[:,:,2]
K = np.isnan(X) | np.isinf(X) | np.isnan(Y) | np.isinf(Y) | np.isnan(Z) | np.isinf(Z)
X[K] = 0
Y[K] = 0
Z[K] = 0
data[:, :, 0] = Img[:,:]
data[:, :, 1] = Img[:,:]
data[:, :, 2] = Img[:,:]
data[:, :, 3] = X
data[:, :, 4] = Y
data[:, :, 5] = Z
data done

grey scale image anyway so just call first indices
frame = data[:, :, 0] * 255.0

add patch box
cv2.rectangle(frame, tuple(s), tuple(e), (0, 0, 255), 5)

plot the base image + patch box
img = plt.figure(num="Base image")
plt.imshow(frame, cmap = 'gray')
plt.xlabel('X')
plt.ylabel('Y')
img.show()

get X and Y coords for mesh drawing
X_m = np.arange(m)
Y_m = np.arange(n)
X_m, Y_m = np.meshgrid(X_m, Y_m)

'''
plot 3D mesh
mesh = plt.figure(num="Entire 3D plot")
ax = mesh.gca(projection='3d')
ax.plot_surface(X_m, Y_m, Z, linewidth=0.2, antialiased=True)
plt.xlabel('X')
plt.ylabel('Y')
ax.set_zlabel('Z')
mesh.show()
'''

extract patch points
patch = data[s[1]:e[1],s[0]:e[0],3:]
X_p = patch[:,:,0]

18

Y_p = patch[:,:,1]
Z_p = patch[:,:,2]

plot X component
imgx = plt.figure(num="Patch X component")
plt.imshow(X_p, cmap = 'gray')
plt.xlabel('X')
plt.ylabel('Y')
plt.colorbar()
imgx.show()

plot Y component
imgy = plt.figure(num="Patch Y component")
plt.imshow(Y_p, cmap = 'gray')
plt.xlabel('X')
plt.ylabel('Y')
plt.colorbar()
imgy.show()

plot Z component
imgz = plt.figure(num="Patch Z component")
plt.imshow(Z_p, cmap = 'gray')
plt.xlabel('X')
plt.ylabel('Y')
plt.colorbar()
imgz.show()

get X and Y coords for patch mesh drawing
X_m = np.arange(s[0],e[0])
Y_m = np.arange(s[1],e[1])
X_m, Y_m = np.meshgrid(X_m, Y_m)

'''
plot 3D patch
patch_mesh = plt.figure(num="Patch 3D plot")
ax = patch_mesh.gca(projection='3d')
ax.plot_surface(X_m, Y_m, Z_p, linewidth=0.2, antialiased=True)
plt.xlabel('X')
plt.ylabel('Y')
ax.set_zlabel('Z')
patch_mesh.show()
'''

calculate plane equation, rms, residuals
C, rms, residuals = fitplane_m(patch)
Z = C[0]*X_p + C[1]*Y_p + C[2]
print "RMS is {}".format(rms)

'''
plot fitted plane
plane = plt.figure(num="Fitted plane")

19

ax = plane.gca(projection='3d')
ax.plot_surface(X_m, Y_m, Z, linewidth=0.2, antialiased=True)
plt.xlabel('X')
plt.ylabel('Y')
ax.set_zlabel('Z')
plane.show()
'''

build the color map for residuals
heatmat = np.copy(residuals)
cmap = colors.ListedColormap(['red','yellow','green','blue'])
bounds=[np.min(residuals),-rms,0,rms,np.max(residuals)]
norm = colors.BoundaryNorm(bounds, cmap.N)

plot residual color map
error = plt.figure(num="Errors")
img = plt.imshow(residuals, interpolation='nearest', origin='upper', cmap=cmap, norm=norm)
plt.colorbar(img, cmap=cmap, norm=norm, boundaries=bounds, ticks=[np.min(residuals),

-rms,0,rms,np.max(residuals)])

plt.show(block=True)

20

	Introduction
	Method
	Data Selection
	Plane Fitting
	Tracking Algorithm

	Results
	Overall Performance
	RMS Against Movement Across Axis
	Core Data Table
	Residual Color Maps

	Overall Observations and Conclusions
	Appendix - Code Listings
	main.py
	fetch.py
	match.py
	plot.py
	draw_single.py

